B.Sc.III - MATHEMATICS (PAPER-THIRD), 2014

(NUMERICAL ANALYSIS AND PROGRAMMING IN C)

Time: Three Hours

Maximum Marks: 75

Note: Attempt questions from all the Sections.

SECTION-A

(SHORT ANSWER TYPE QUESTIONS)

Note: Attempt any ten questions. Each question carries 5 marks.

(3×10=30)

attp://www.upadda.com

- 1. If Δ is a forward difference operator and ∇ is a backward difference operator. Show that
 - (i) $(1+\Delta)(1-\nabla)=1$

(ii)
$$D = \frac{1}{h} (\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots)$$

Where D is the differential operator & h is interval of differencing.

- 2. Find the function whose first difference is $9x^2 + 11x + 5$
- 3. Evaluate $\Delta''\left(\frac{1}{x}\right)$.
- 4. If δ is the central difference operator and μ is the average operator.

Prove that
$$\mu^2 = 1 + \frac{\delta^2}{4}$$
.

5. The following table is given

What is the form of the following f(x)?

6. Prove that

$$\frac{d}{dx}(y_x) = \frac{1}{h}(y_{x+h} - y_{x-h}) - \frac{1}{2h}(y_{x+2h} - y_{x-2h}) + \frac{1}{3h}(y_{x+3h} - y_{x-3h}) + \dots$$

- 7. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Simpson's $\frac{1}{3}rd$ rule and Simpson's $s\frac{3}{8}th$ rule.
- 8. Apply Given's method to reduce the following matrix to tri-diagonal

form
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 3 & 2 & 3 \end{bmatrix}$$
.

- Define recursion. Write a program in C language using recursion to find factorial of a number.
- 10. Solve the following initial value problem by the generating function technique $y_{h+2} 5y_{h+1} + 6y_h = 2$ if $y_0 = 1$, $y_1 = 2$.
- 11. Describe Picards method of successive approximations.
- 12. Prove that $\Delta^2 0^m = n\Delta^{n-1}0^{m-1} + n\Delta^n 0^{m-1}$ where $\Delta^n x^m |_{x=0} = \Delta^n 0^m$
- 13. By using Newton-Raphson method, Find the root of $x^4 x 10 = 0$ which is nearer to x = 2, correct to three places of decimal. http://www.upadda.com
- Define the following statement in Clanguage.
 - (i) If statement and if-else statement.
 - (ii) Switch Statement
- 15. Obtain the Chebyshev Linear polynomial approximation to the function $f(x) = x^3$ on [0, 1].

SECTION-B (LONG ANSWER TYPE QUESTIONS)

Note: Attempt any three questions. Each question carries 15 marks. (15×3=45)

http://www.upadda.com

- 1. (a) Use method of Separation of Symbols to Prove that $u_1 x + u_2 x^2 + u_3 x^3 + ... = \frac{x}{1-x} u_1 + \frac{x^2}{(1-x)^2} \Delta u_1 + \frac{x^3}{(1-x)^3} \Delta^2 u_1 + ...$
 - (b) If p,q,r,s be the successive entries corresponding to equidistant arguments in a table, show that when third difference are taken into account, the entry corresponding to the argument half-way between arguments of q and r is $A + \frac{1}{24}B$, where A is arithmetic mean of q and r, B is the arithmetic mean of 3q 3p s and 3r 2s + p.
- 2. (a) Four equidistant values $u_{.1} u_0$, u_1 and u_2 being given, a values is interpolated by Lagrange's. Show that it may be written in the form $u_x = yu_0 + xu_1 + y \frac{(y^2 1)}{3!} \Delta^2 u_1 + \frac{x(x^2 1)}{3!} \Delta^2 u_0$. Where x + y = 1.
 - (b) Apply Bessd's formula to find y_{25} Given $y_{20} = 24$, $y_{24} = 32$, $y_{28} = 35$, $y_{32} = 40$.

3. (a) Obtain the cube root of 12 to five decimal places by Newton Raphson method.

(b) Find f' (5) from the following table

That (5) Hom the following table						
X	0	2	3	4	7	9
F _(x)	4	26	58	112	466	922

4. (a) If $u_x = a + bx + cx^2$, Prove that

 $\int_{1}^{3} u_{x} dx = 2u_{2} + \frac{1}{12} (u_{0} - 2u_{2} + u_{4}) \quad \text{and} \quad \text{hence} \quad \text{find} \quad \text{an}$ approximate value for $\int_{-1/2}^{1/2} e^{-x^{2/20}} dx.$

- (b) Use Picard's method to approximate y when x = 0.2 given that y = 1 when x = 0 and $\frac{dy}{dx} = x y$.
- 5. (a) Using Jacobi's method, find the eigen values of the matrix A given by $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix}$.
 - (b) Solve the following difference equations.

$$y_{h+2} - 4y_{h+1} + 4y_h = 3h + 2^h$$

- 6. Write short notes on any Two of the following:
 - (a) Runga-Kutta method for solving differential equation second order and third order.
 - (b) QR-Method for finding eigen values.
 - (c) Legendre's Polynomials

http://www.upadda.com

- (d) Decision statements and control structures in C-language with examples.
- (e) Language's Interpolation formula.

http://www.upadda.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से