B.Sc. !- Mathematics (First Paper), 2006

(Algebra, Matrices and Trigonometry)

Note: 1. Attempt all section.

2. All objective type question of section A are compulsory.

3. Attempt any eight question from section B and any two questions from section C.

SECTION-A			
1. If a, b and c are two elements of a group G , then $(abc)^{-1}$ is equal to:			
(a) $a^{-1}b^{-1}c^{-1}$	(b) $c^{-1}b^{-1}a^{-1}$	(c) abc	(d) cba
	subset H of a group		
(a) $ab^{-1} \in H$	(b) $a^{-1}b \in H$	(c) $b^{-1}a^{-1} \in H$	(d) $ab \in H$
3. The identity element of the group (z, +) is:			
			(d) 0
(a) 1 (b) 2 (c) 3 (d) 0 4. If $f:(z, +) \longrightarrow (z, +)$ is a group homomorphism then $f(0) =$			
	(b) 0		(d) 3
5. The set of all natural numbers is:			
(a) additive group (b) multiplicative group			
(c) cyclic group		(d) not a group	
6. In a group $\{(1, \omega, \omega^2)\}$ where $\omega = 1^{1/3}$, the inverse of ω^2 is:			
(a) 1	(b) ω	(c) ω^2	(d) none of these
7. The rank of m	$\text{natrix } A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	0 0 is:	
(a) 1	(b) 2	(c) 3	(d) 4
(a) 1 (b) 2 (c) 3 (d) 4 8. A matrix $A = [a_{ij}]_{m \times n}$ is called a square matrix if:			
(a) $m \le n$	(b) $m \ge n$	(c) $m = \kappa$	(d) none of these
9. The value of t	an (ix) is:		
(a) i tanh x	(b) $i \sinh x$	(c) $i \cosh x$	(d) i sech x
10. The value of	cosech x:		
$(a) \frac{2}{e^x - e^{-x}}$	$(b) e^x + e^{-x}$	$(c) \frac{e^x + e^{-x}}{2}$	$(d) \frac{2}{e^x + e^{-x}}$
SECTION - B			

http://www.upadda.com

- 1. Prove that the set of cube roots of unity is abelian finite group with respect to multiplication.
- 2. Show that if every element of a group G is its own inverse, then G is abelion.
 - 3. Show that any element of the group and its inverse have the same order.
 - 4. Prove that the intersection of two subgroup is a subgroup.
- 5. If $f: G \to G'$ be a group homomorphism and e and e' be identities in G and G' respectively, then show that f(e) = e'.

6. If $a \in G$, G is any group, then show that

$$(a^{-1})^{-1} = a$$

7. Prove that the matrix A is Hermitian, where

$$A = \begin{bmatrix} 1 & 1 & i & 2 \\ 1+i & 3 & i \\ 2 & -i & 0 \end{bmatrix}$$

8. If $A = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -2 & 0 \\ 4 & 5 & -3 \end{bmatrix}$, then show that :

$$(AB)' = B'A'.$$

9. Show that the following matrix is unitary:

$$A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$$

10. Find the rank of the following matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 4 & 10 & 18 \end{bmatrix}$$

- 11. Resolve $\tan (\alpha + i\beta)$ into real and imaginary part.
- 12. Find the general value of $\log (-3)$ i.e., $\log (-3)$.

SECTION-C

nttp://www.upadda.com

- 1. Show that the set of all integers is a commutative ring with respect of addition and multiplication.
- 2. Prove that the relation of isomorphism of groups in the set of all groups is an equivalence relation.
 - 3. Find characteristic roots and characteristic vectors of the matrix A, where

$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}.$$

4. If $u = \log_e \tan (\pi/4 + \theta/2)$, then prove that : $\sinh u = \tan \theta$:

http://www.upadda.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay से